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Statistical uncertainty

• Uncertainty in data
• instrument noise
• L1 data cleanup
• L1 to L2 inversion

• Uncertainty in modelling
• forward model formulation
• model selection
• representativeness
• resolution

• Uncertainty in statistical inference
• estimated model parameters
• parameter uncertainty
• model prediction
• interpolation



Model selection

• Classical model parsimonity problem
• AURA/OMI aerosol model selection for multi wavelength

OMAERO retrieval algorithm.



Classical model parsimonity problem

• Observations with two
competing models

• Linear model with 2
parameters, quadratic with
3.

• Only ofter having
information on
observation accuracy we
can decide the
goodness-of-fit.

• How about bias?
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Bias and noise

In practice we need to take into
account model discrepancy.

obs = model + εnoise + εbias

Two aerosol models fitted to
same AURA/OMI reflectance
observations. Both fit the data
within the limits of the
accuracies of the observations
given by error bars. Both also
exhibit similar but opposite
bias.
See Anu Määttä’s poster.
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Beyond L2

• Profile interpolation
• Spatial interpolation
• Time series analysis
• Assimilation into atmospheric models



The problem of profile interpolation

• How to interpolate
between two retrieved
profile values?

• Suppose the value in the
middle is calculated as an
average of the values
above and below.
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Setting (x1 + x3)/2 − x2 ∼ N(0, s2), with s = 0 means that we
set – a priori – the second derivative of the profile to zero. This
leads to standard error of mean as uncertainty for x2.



The problem of profile interpolation

• How to interpolate
between two retrieved
profile values?

• Suppose the value in the
middle is calculated as an
average of the values
above and below.

x1

x2

x3

Setting (x1 + x3)/2 − x2 ∼ N(0, s2), with s equal to standard
error of mean implies linear interpolation of uncertainty for x2.



The problem of profile interpolation

• How to interpolate
between two retrieved
profile values?

• Suppose the value in the
middle is calculated as an
average of the values
above and below.
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Setting (x1 + x3)/2 − x2 ∼ N(0, s2), with s equal to mean of
the individual uncertainties of x1 and x3 imply uncertainty as in
linear regression when predicting a new observation.



Spatial interpolation for gridded data
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• Same problem as in profile
interpolation but in 3
dimensional
LAT-LON-TIME grid.

• Griding non-uniform
observations in space and
time.

• A priori spatial variability
(structure function)
information needed.

• Can be implemented as
hierarchical Gaussian
model for predefined
regular grid η.



Spatial interpolation using hierarchical Gaussian
model

General model for spatial interpolation:

y|η ∼ N(Hη, Σy), observations
η|β ∼ N(Xβ, Ση), spatial random field

β ∼ N(β0, Σβ) hyper parameters

Notation: y observations, η spatial-temporal grid, H
observation operator, X linear model for mean variability of
O3, β model parameters.
Determining realistic spatial correlation structure Ση is the
most demanding task in the interpolation.



From gridded data to time series analysis

• Classical statistical methods usually not directly applicable
to atmospheric time series.

• Preferable methods are those that directly apply to
non-stationary series, using of proxies, and can handle
observation uncertainty and missing observations, such as
state space methods.

• Erkki Kyrölä’s presentation.
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Time series modelling

State space model for O3 time series.

yt = xt + εt, observations
xt = β1 solar(t) + β2 qbo1(t) + β3 qbo2(t) + µt + st, model
µt = µt−1 + at−1 + εµ, local level

at−1 = at−2 + εa, local trend
st = −st−1 − st−2 − . . . st−11 + εs, seasonal effect
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Conclusions and general thoughts

• Explicit and transparent a priori information means
verifiable uncertainty statements.

• It allows comparison of a priori profiles to inverted
profiles.

• Uncertainty estimates are always conditional to the
assumptions about error statistics.

• This includes assumptions on the smoothness of
underlying continuous fields.

• Model uncertainty analyses are usually heavily affected by
the way model bias is handled.
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